Lagrangian Constrained Clustering

نویسندگان

  • Mohadeseh Ganji
  • James Bailey
  • Peter J. Stuckey
چکیده

Incorporating background knowledge in clustering problems has attracted wide interest. This knowledge can be represented as pairwise instance-level constraints. Existing techniques approach satisfaction of such constraints from a soft (discretionary) perspective, yet there exist scenarios for constrained clustering where satisfying as many constraints as possible. We present a new Lagrangian Constrained Clustering framework (LCC) for clustering in the presence of pairwise constraints which gives high priority to satisfying constraints. LCC is an iterative optimization procedure which incorporates dynamic penalties for violated constraints. Experiments show that LCC can outperform existing constrained clustering algorithms in scenarios which satisfying as many constraints as possible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Repeated Record Ordering for Constrained Size Clustering

One of the main techniques used in data mining is data clustering, which has many applications in computer science, biology, and social sciences. Constrained clustering is a type of clustering in which side information provided by the user is incorporated into current clustering algorithms. One of the well researched constrained clustering algorithms is called microaggregation. In a microaggreg...

متن کامل

Fast Multiplier Methods to Optimize Non-exhaustive, Overlapping Clustering

Clustering is one of the most fundamental and important tasks in data mining. Traditional clustering algorithms, such as K-means, assign every data point to exactly one cluster. However, in real-world datasets, the clusters may overlap with each other. Furthermore, often, there are outliers that should not belong to any cluster. We recently proposed the NEO-K-Means (Non-Exhaustive, Overlapping ...

متن کامل

A constrained cluster-based approach for tracking the S&P 500 index

We consider the problem of tracking a benchmark target portfolio of financial securities in particular the S&P 500. Linear integer programming models are developed that seeks to track a target portfolio using a strict subset of securities from the benchmark portfolio. The models represent a clustering approach to select securities and also include additional constraints that aim to control risk...

متن کامل

Multi-view low-rank sparse subspace clustering

Most existing approaches address multi-view subspace clustering problem by constructing the affinity matrix on each view separately and afterwards propose how to extend spectral clustering algorithm to handle multi-view data. This paper presents an approach to multi-view subspace clustering that learns a joint subspace representation by constructing affinity matrix shared among all views. Relyi...

متن کامل

A globally and quadratically convergent primal-dual augmented Lagrangian algorithm for equality constrained optimization

A globally and quadratically convergent primal–dual augmented Lagrangian algorithm for equality constrained optimization Paul Armand & Riadh Omheni To cite this article: Paul Armand & Riadh Omheni (2015): A globally and quadratically convergent primal–dual augmented Lagrangian algorithm for equality constrained optimization, Optimization Methods and Software, DOI: 10.1080/10556788.2015.1025401 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016